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Abstract - We present initial results of research toward aalgorithm than Walkii. More recently, a MHI with two
novel Mobile Haptic Interface (MHI) that provides an desktop haptic interfaces was proposed for two-point ma-
unlimited haptic workspace in large immersive virtualnipulation [7].
environments. When a user explores a large virtual envi- In this paper, we present an initial version of POSTECH
ronment, the MHI can sense the configuration of the useMobile Haptic Interface (PoMHI v0.5) especially de-
move itself to an appropriate configuration, and mtevi signed to be used with large visual environments such as
force feedback for haptic display, thereby enablingra v the CAVE™. The PoMHI can move in any direction using
tually limitless workspace. Our MHI (PoMHI v0.5) is three omni-directional wheels while avoiding collisions
featured with omni-directional mobility, a collisiore&  with a user, load general virtual environment models, and
motion planning algorithm, and force feedback for genergbrovide acceptable force feedback. The mobile base with
environment models. We also provide experimental rethe three omni-directional wheels was controlled via a
sults that show the fidelity of our mobile haptic ifiee. PID-control with an additional fuzzy logic control. A mo-
tion planning algorithm guiding the movement of the
Keywords - mobile haptic interface, mobile robot, mobile base was also developed. We also confirmed
omni-directional wheel, PID control with fuzzy logic through experiments that the dynamics of the mobile base
control, haptic rendering brings little interference on the forces deliveredtouser.

The reminder of this paper is organized as follows.
Section 2 briefly reviews the overall architecturettod
PoMHI. Section 3 describes the hardware components and

A force-feedback haptic interface has an inherent limithe control methods used in the system. In Section 4, we
on its workspaces and cannot render virtual objectsrlarggescribe the software structure and the motion planning
than its workspace. This is tolerable in desktop applicestrategy. The effect of the mobile base dynamics en th
tions where the size of a virtual environment imiparable ~ final rendering force is also examined. Applicatiohthe
to the workspace of a desktop haptic interface, but can beP®@MHI are discussed in Section 5. Finally, we conclude
severe limitation in large virtual environments suctihas this paper in Section 6.

CAVE™. The traditional solution to this problem has been

using a large haptic interface of a manipulator type [1] or 2. System Architecture

of a string type (SPIDAR) [2][3]. However, their work-
spaces are still limited and cannot be easily scaletit-to Th
tual environments of different sizes.

1. Introduction

The overall system architecture is shown in Figure 1.
e 1S-900 Tracking System (a processor and two track-
ers; InterSense Inc., USA) is responsible for tragkire

A promising alternative is a Mobile Haptic Interface s : o - .
N ; current configurations (position and orientation) of both
(MHI) that refers to a force-feedback haptic interfad: .the PoMHI and the user. Tracked information is setii¢o

a mobile base. The mobile base can move the haptic in-

terface to an adequate place to render large virtual ebjer” rtracker server 1S-900 Processor
and thus can provide an unlimited workspace. Compart e E— T M0

to other large haptic interfaces, the MHI is eastebé ="/ n = Wired ek
installed or removed due to its mobility, considerably - \\ 7 Wireless LAN (UDP)
smaller, and safer. Furthermore, the MHI can provid fRositions ,rf@\)

orientation I

high-fidelity force feedback since a desktop haptic inter Posit:ion& YOHZ\ ( JJ Ny

face with greater precision is used for it. orientation C\)?‘-}
The concept of the MHI was firstly proposed by 180Hz &

Nitzsche et al [4][5]. Although their MHI, Walkii, had -

omni-directional mobility, a simple motion planning al- o

gorithm was used and only primitive objects could b v emv“‘jzogm

rendered. Barbagli et al. presented two new MHIs in 20C - F°‘°e'

[6]. Both of the two MHIs used a commercial robottas i i b

mobile base and adopted more complex motion plannir

)
S/

-

Laptop PoMHI  User

Fig. 1. Architecture of the PoMHI.
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Fig. 4. Omni-directional structure on local coordinates.

origin of the local coordinate is set to the centéhefbase
and the parameters are defined as:

v. : Linear velocity of each whedl £ 1, 2, 3)

v =[x Y] : Linear velocity of the mobile base

¢ : Angular velocity of the mobile base
L : Distance between a wheel and the orgin.

Fig. 3. An omni-directional wheel (left) and the placeme  Tnen, the mobile base kinematics can be derived as
of three wheels in the mobile base (right). follows [8][9]:

tracker server, and the server forwards it to theofapt

inside the PoMHI via UDP protocol. Based on the user’s 1 0 L

configuration, the laptop determines an appropriate co v, X

figuration of the mobile base and controls the bapéatee vl 1 _ﬁ _Livl= s (1)
it to the configuration. Graphic and haptic rendering| 2| | 2 2 y o

modules are also managed in the laptop. The user wears‘a 1 3 ¢

head mounted display (HMD) and sees stereoscopic > 5 —L

scenes of a virtual environment. Relevant commuricati
and rendering rates are specified in the figure.

. . . T T AT
WhereS:[x y qﬁ] :[v qﬁ] .
3. MHI Hardware
3.1 MHI Hardware Design 3.2MHI Control
A. Overall Sructure of the Hardware A. Mobile Base Control Overview

The hardware structure of the PoMHI is shown in The motion of the mobile base is based on PID cbntro
Figure 2. It consists of four main parts: omni-direction for the desired linear and angular velocities of the.base
wheels and geared DC motors, a DSP control board af#own in Figure 3, each omni-directional wheel has six
power amplifiers, a laptop, and a desktop 3 DoF hapti€e-rolling sub-wheels that may cause a slip. Morgave
interface (PHANTOM Premium 1.5A:; SensAble inc.,Was observed that the mobile base contains inherent
USA). The mobile base is responsible for moving théonlinearity induced from the wheel and belt-pulley
whole PoMHI to face the user, and the PHANToM isStructure. We thus also use a fuzzy logic control (Flid) a

responsible for providing appropriate force feedbackeo t Other supplementary control techniques to overcome the
user. problem. The overall control equation for maitds:

B. Omni-directional Sructure Ui(k+)=U; () +AU; () +Ti k), )

Figure 3 shows the mobile-base actuation design usinghereU;(k) is a command to be sent to the motor amplifier
three omni-directional wheels. Our design follows theandT;(k) is an output of the supplementary control. The
Y-shaped structure for holonomic motion of the mobilesampling rate of the control loop is set to 50 Hz.
base. This is more adequate than a bidirectional mobile
robot to follow possibly abrupt motions of a user. EactB. PID-based Vel ocity Control
wheel is connected to a motor by a timing belt and a
pulley.

The kinematics of the mobile base is derived from th
relation of parameters represented in Figure 4. Here, t

Once a desired trajectory of the mobile base is
getermined from the motion planning algorithm (will be
he@gplained later), the desired velocity of each wheel is
calculated by the kinematics in Eq. (1). Using these
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Fig. 5. Experimental results using the PID-baséacty  C. Fuzzy Logic Control

control only (x= 0.0 m/s,y = 0.2 m/s,¢ = 0.0 rads). We use a singleton fuzzifier, a product inferenugiree,

and a center average defuzzifier in FLC of the tedtmse.
NE N H 4 = The inputs are the velocity erreik) and its increment
— , I Ag(k). We use triangular membership functiong @nd
) @S shown in Figure 6. Membership functions cdnsis
| of five sections; negative big (NB), negative (Mgro
’ (Z20), positive (P), and positive big (PB). Thesetiems
are determined experimentally.

o>

004 00z o0l 0.0l oo oM elx)

N : MZ‘C) P Table 1 shows the rule set of the FLC derived ftbm
! ' input membership functions. Each element of théefab
y“ | represents the output of each rule. Using thesrul
and input variables, the updating output of FL{3|s
0.00% 0003 Sek) 5 3
—(mn) m n
Fig. 6. Membership functions of velocity errgr,, and AUk ;; Y me (e (k)
its variation, z,, - =53 o ' ©)
D> ol (Kpne (k)
m=1 n=1

velocities, each motor is controlled by the PID control
method. The velocity of each wheel is estimated usiag t
exponential filter as: D. Suppl tary Control

We adopt additional supplementary control when the

V; fitered (K) = (1= )V, firgrea (K—D)+ V1 (k) (3) following condition is satisfied:

where0 < <1 is the parameter of the filter. U, (k)] > U, (k=1 & |V geres (K)| <V srrea (K=D)[ - (6)
To obtain the desired motor velocity, we use the PI

control equation as follows: This condition detects when the contact point eftesel

between a sub-wheel and the floor is changed. Vhiige

¢ occurs, excessive errors are accumulated in thecBibD
Uilk+1)=K,q (k)+K‘§QG)+KdAQ ®). ) trol which causes an overshoot in position contfgi.
algorithm to minimize this behavior is describetble
wheree (K) =V, srea (K) — Vi j1eq (K) is the velocity error If Eq. (6) is satisfied at time inddxthe controller stores

of the motor, ani,, K;, andKq are the PID gains. the sum of updating outputdJ;(K) and the current velocity

Using only the PID control did not bring enough-per Ve = Viiee (K) - IN €ach control imeafterk, the controller
formance in our system. This is illustrated in Feg® checks Whetheracondltlorve|<|vfiltered (|_)|, is met. Ifitis,
where the red lines represent references and bies | the controller compensates the excessive error by:
measured values. The left graph shows the posifitine

PoMHI, and the right three graphs show the velesiof = zI:AUi (k) and 7)
the wheels. We can observe the system nonlingarihe ' i—k
black circles where the measured velocity ratheredses U, (I)=U(l)—~-U, ., (8)

in spite of the increase of the reference velocitlge
nonlinearity seems to be caused by the increaembn  \yhereo < v <1is a proportional constant. Without the
when the contact point of a wheel between a sulelvhe e of this control process, the system can babiestThe

and the floor is changed. Because this nonline@&ity-  fina) output of the supplementary control is asoiok:
herent characteristics of the wheel structure, ietiting
_’Y'Ui,sum(l)i kzl}

this phenomenon perfectly may not be possible. Mis t

minimize the effect of the nonlinearity through aimal  I'(k) = 0 K|
control methods that will be described in the reedtsec- '

tions.

9)
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Fig. 7. Experimental results with the modified \&tp
control (x= 0.0 m/s,y = 0.2 m/s,¢ = 0.0 rad/s).

Tracker Server Mobile Haptic Interface

Haptic
P HMD
Interface
Force Joint Angles of
Command Haptic Interface
Robot and User
Tracker Position Haptic HIP, User, and Visual
Server (via Wireless LAN) Server Robot Position Server
Velocity Command Laptop
1S900 Mobile
Tracker Robot

Fig. 8. Software structure of POMHI.

E. Experimental Results

Figure 7 presents the results with the adapted &idC
the supplementary control. In the velocity grapleath
wheel, fine trembles due to the change of contaictte
still show up, but we can see that the effect efittherent
nonlinearity has significantly decreased. Moreouethe
position graph, measured position values almogegtty
followed the reference values (a straight line).

4, MHI Software
4.1 MHI Software Design

The software in the MHI system consists of thragspa
The tracker server program which is executed in th
tracker server receives the configuration of eg8800
tracker and sends this information to the MHI viegkess
LAN. Using this information, the software running the
laptop in the MHI controls all devices in the MHixgept
for the motors controlled by the DSP board) andlees
visual and haptic information.

The tracker server program and the MHI communicat
through wireless LAN. Due to the update rate ofl$@00
tracker, the network update rate is set to 190 Hz.
maintain this speed, the UDP protocol is used atstaf
the TCP protocol. TCP, which is more reliable thHpP,
is sometimes too slow and even exhibits severergitt
Whenever a packet is missed in TCP, the protocol r
transmits all packets after the missed packet andes a
long delay which is unacceptable in our applicatibine
UDP is not as complex as the TCP, and is therdéater.
Although some packets can be missed and reordered d
ing transmission in UDP, its effect can be madesra
parent to a user.
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Fig. 9. Configuration space of the MHI.

d’ = human arm length + robot radius
robot 7 =30
‘ if d < radius of user
=0
ifr <o
SubTarget = target
else

o
User =

[User,, 0, Uw‘z';]‘r — [Usery, 1. LF«'J';]T
target Q Taor =
SubTarget = Rotate( User, ) Poyprent Robot Position

change SubTarget to satisfy
distance (user, SubTarget) == d’
go to SubTarget

Fig. 10. Motion planning algorithm.

The haptic server program is comprised of netwakin
motion planning and haptic rendering parts. Fitsg
networking part receives the tracker informaticmdrthe
tracker server and transforms the coordinate sy$tem
IS-900 to the world coordinate frame. This updates
configuration of the user, the mobile base andhugtic
interface point (HIP; a point modeling the haptolttip)
and sends the new information to the visual se¢hreugh
network. Note that since the haptic and visual exepvo-
grams communicate with each other via network twce
gervers can operate on separate machines for |@srpos
sSuch as higher performance or improved convenience.
Second, the motion planning part calculates thet nex
proper configuration of the mobile base and comreand
angular and linear velocities to the mobile basealfy,
the haptic rendering part detects a collision betwthe
HIP and virtual objects and calculates haptic feekb
force. All of these parts run at different ratesitee haptic
Server is designed as a multithreaded program.

The other server program which also runs on thepap
is the visual server. The visual server receives dbn-
figuration information from the haptic server amhders
visual scenes. In our current system, a HMD is ueed
visual rendering, so the visual server also runsthen

GI‘aptop with the haptic server. If other visual syst are

used (e.g. CAVE"), the visual sever can be easily moved
to another machine that controls the visual dis@lag
communicate with the haptic server through netwaskis
done in [11].
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Fig. 11. Regions that the mobile base can move in 1
second with different maximum angular velocities
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Fig. 12. Regions that the mobile base can move in 1
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Fig. 13. Comparison between commanded and meas-
ured forces when the mobile base was stationary.
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Fig. 14. Comparison between commanded and meas-
ured forces when the mobile base was moving.

To evaluate the performance of the motion planning

algorithm, we simulated the motion of the mobiledand
the user and represented the results with graphigures
11 and 12. To simplify the simulation process, vge a
sumed the mobile base could always move with maximu

second with different maximum angular velocities.VE!0City. In €ach graph, the red point represéressurrent

4.2 Moation Planning Algorithm
Basically, the mobile base has to place the haptiice

position of the MHI and the blue region represémésnext
position of the user where the mobile base carhcagc
with the user in 1 second. The results indicat¢ tha
change of maximum angular velocity does not signifi

in a proper position where the device can give gorccantly matter to the MHI while the change of thexima

feedback to a user most effectively while avoidaogi-
sions with a user. Considering these constrairgdsset/the
goal position of the MHI on a line which passes tiser
and the user’s hand grasping the haptic tool. T$tante
between the user and the MHI is maintained withia t
typical arm length of an adult. Moreover, the Mivays
faces the user so that the haptic interface tqmbstioned
in front of the user.

To represent the motion of the MHI, we introducgla

configuration space where k&ndz axes represent the 2D

position of the mobile base and yt&xis the direction of
the MHI in the workspace. In the configuration spaa
configuration of the MHI is represented as a panij a
user is represented as a cylindrical obstacleRgpee 9).

To move the MHI to a goal configuration without-col
liding with the user, we developed the following tioo
planning strategy consisting of three cases. Rifsgn the
MHI is too close to the user, it moves away frora tiser
as soon as possible to avoid possible collisiorth thie
user. Second, when the goal position is closedatinrent
position, the MHI moves toward the goal. Finallyhem
the goal position cannot be reached directly (edgen the
user is on the path), the MHI sets sub-goals betviee
goal and current position of the MHI and moves talsa
the nearest sub-goal. An implemented algorithmtiis
strategy is shown in Figure 10.
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mum linear velocity does.

4.3 Force Rendering Algorithm

To calculate feedback force for a user given the pt-
sition and a virtual environment model, we use\inial
proxy algorithm which is widely used for haptic dening
with static objects. In a MHI, the movement of ahite
base can cause unwanted forces that may be petdsive
the user. However, if the mobile base is tightlysipo
tion-controlled and significantly heavier than gfta in-
terface on top of it, we can ignore the effect obite base
dynamics. To verify this fact, we conducted an expent
with a force sensor attached between the lankdinthe
PHANTOM and the puck held by the user.

The results of the experiment are shown in FigaRes
and 14 where the red lines represent commanded forc
the haptic device and the blue lines recorded fbycine
force sensor. According to the results, the diffiees

between the commanded and recorded force in the cas

of the moving mobile base are not greater thanettios
the case of the stationary mobile base. This mézats
the mobile base dynamics does not significantlectff
the feedback force delivered to the user. Therefore
calculate torque commands sent to the haptic exterf
only considering the static torque-force relatiapsof
the desktop haptic interface.
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immersive large virtual environment platform amdhg
present.
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Fig. 15. A user playing with the virtual dolphining
the PoMHI (left) and the visual scenes displayed t¢1]
the user via the HMD (right). The red sphere
represents the Hl

4.4 Virtual Environment Model

Not only primitive models such as a plane and a cyl
inder but also complex triangular mesh models can b
loaded and rendered in the POMHI. The visual semiser
shows the current position of the HIP to let therdsiow |3
where s/he interacts with and the wall for a wagrabout
the physical workspace limit in a room. The modahe
mobile base is also loaded and visually renderedavi
HMD in order to help the user avoid colliding withe
mobile base for the safety purpose.

(2]

(4]
5. Applications

The current MHI system can provide the user with
visual and haptic feedback about large virtual em g
ments. One example is shown in Figure 15. A complex
dolphin model consisting of 4488 faces is loaded], the
user sees and touches the real-sized dolphin nfb288
mm wide, 426 mm high, and 352 mm deep). For the Staf6
bility of the mobile base, we set the maximum linaad ]
angular velocity to 0.2 m/s and 40 degree/s, résmbe
With this maximum velocity values, the MHI can &N
the user in most cases, unless the user movestlgbrup

[7]
6. Conclusions and Future Work

We have develop an initial version of new mobile
haptic interface named PoMHI and its applicatioftse
PoMHI can place itself to an appropriate configorato (8]
provide boundaryless haptic feedback while avoiding
collisions with the user, and handle general virtua
environment models. We adopted several motion obntr
methods to stably and correctly control the motibthe  [9]
mobile base. We also examined the fidelity of force
display in the POMHI by comparing actual force augp
with desired values.

We are currently working on a next version of the[ 0]
PoMHI. This version has four omni-directional whseel
with advanced design and a lift for the desktoptiap
interface for the extension of its workspace in hiegght
direction. We are also upgrading the software timgeof
more sophisticated motion planning algorithm, more
precise kinematics calibration, and force compaiati
algorithm considering the effect of the mobile base
dynamics. Once all of these are completed, we will
integrate the PoMHI into the CAVE that is the most

(11]
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