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Abstract - We present initial results of research toward a 
novel Mobile Haptic Interface (MHI) that provides an 
unlimited haptic workspace in large immersive virtual 
environments. When a user explores a large virtual envi-
ronment, the MHI can sense the configuration of the user, 
move itself to an appropriate configuration, and provide 
force feedback for haptic display, thereby enabling a vir-
tually limitless workspace. Our MHI (PoMHI v0.5) is 
featured with omni-directional mobility, a collision-free 
motion planning algorithm, and force feedback for general 
environment models. We also provide experimental re-
sults that show the fidelity of our mobile haptic interface.   
 
Keywords - mobile haptic interface, mobile robot, 
omni-directional wheel, PID control with fuzzy logic 
control, haptic rendering 
 

1. Introduction 
 

A force-feedback haptic interface has an inherent limit 
on its workspaces and cannot render virtual objects larger 
than its workspace. This is tolerable in desktop applica-
tions where the size of a virtual environment is comparable 
to the workspace of a desktop haptic interface, but can be a 
severe limitation in large virtual environments such as the 
CAVETM. The traditional solution to this problem has been 
using a large haptic interface of a manipulator type [1] or 
of a string type (SPIDAR) [2][3]. However, their work-
spaces are still limited and cannot be easily scaled to vir-
tual environments of different sizes.  

A promising alternative is a Mobile Haptic Interface 
(MHI) that refers to a force-feedback haptic interface with 
a mobile base. The mobile base can move the haptic in-
terface to an adequate place to render large virtual objects 
and thus can provide an unlimited workspace. Compared 
to other large haptic interfaces, the MHI is easier to be 
installed or removed due to its mobility, considerably 
smaller, and safer. Furthermore, the MHI can provide 
high-fidelity force feedback since a desktop haptic inter-
face with greater precision is used for it.  

The concept of the MHI was firstly proposed by 
Nitzsche et al [4][5]. Although their MHI, Walkii, had 
omni-directional mobility, a simple motion planning al-
gorithm was used and only primitive objects could be 
rendered. Barbagli et al. presented two new MHIs in 2004 
[6]. Both of the two MHIs used a commercial robot as its 
mobile base and adopted more complex motion planning 

algorithm than Walkii. More recently, a MHI with two 
desktop haptic interfaces was proposed for two-point ma-
nipulation [7].  

In this paper, we present an initial version of POSTECH 
Mobile Haptic Interface (PoMHI v0.5) especially de-
signed to be used with large visual environments such as 
the CAVETM. The PoMHI can move in any direction using 
three omni-directional wheels while avoiding collisions 
with a user, load general virtual environment models, and 
provide acceptable force feedback. The mobile base with 
the three omni-directional wheels was controlled via a 
PID-control with an additional fuzzy logic control. A mo-
tion planning algorithm guiding the movement of the 
mobile base was also developed. We also confirmed 
through experiments that the dynamics of the mobile base 
brings little interference on the forces delivered to the user.    

The reminder of this paper is organized as follows. 
Section 2 briefly reviews the overall architecture of the 
PoMHI. Section 3 describes the hardware components and 
the control methods used in the system. In Section 4, we 
describe the software structure and the motion planning 
strategy. The effect of the mobile base dynamics on the 
final rendering force is also examined. Applications of the 
PoMHI are discussed in Section 5. Finally, we conclude 
this paper in Section 6. 
 

2. System Architecture 
 

The overall system architecture is shown in Figure 1. 
The IS-900 Tracking System (a processor and two track-
ers; InterSense Inc., USA) is responsible for tracking the 
current configurations (position and orientation) of both 
the PoMHI and the user. Tracked information is sent to the 

 
 

Fig. 1. Architecture of the PoMHI. 
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tracker server, and the server forwards it to the laptop 
inside the PoMHI via UDP protocol. Based on the user’s 
configuration, the laptop determines an appropriate con-
figuration of the mobile base and controls the base to place 
it to the configuration. Graphic and haptic rendering 
modules are also managed in the laptop. The user wears a 
head mounted display (HMD) and sees stereoscopic 
scenes of a virtual environment. Relevant communication 
and rendering rates are specified in the figure. 
 

3. MHI Hardware 
 

3.1 MHI Hardware Design 
 
A. Overall Structure of the Hardware  
  

The hardware structure of the PoMHI is shown in 
Figure 2. It consists of four main parts: omni-directional 
wheels and geared DC motors, a DSP control board and 
power amplifiers, a laptop, and a desktop 3 DoF haptic 
interface (PHANToM Premium 1.5A; SensAble inc., 
USA). The mobile base is responsible for moving the 
whole PoMHI to face the user, and the PHANToM is 
responsible for providing appropriate force feedback to the 
user. 
 
B. Omni-directional Structure 
  

Figure 3 shows the mobile-base actuation design using 
three omni-directional wheels. Our design follows the 
Y-shaped structure for holonomic motion of the mobile 
base. This is more adequate than a bidirectional mobile 
robot to follow possibly abrupt motions of a user. Each 
wheel is connected to a motor by a timing belt and a 
pulley.  

The kinematics of the mobile base is derived from the 
relation of parameters represented in Figure 4. Here, the 

origin of the local coordinate is set to the center of the base 
and the parameters are defined as:   
 

iv : Linear velocity of each wheel (i = 1, 2, 3)  

[ , ]Tx y=v ɺ ɺ : Linear velocity of the mobile base 

φɺ : Angular velocity of the mobile base 
L : Distance between a wheel and the orgin. 

 
Then, the mobile base kinematics can be derived as 

follows [8][9]: 
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where 
T TTS x y φ φ   = =      vɺ ɺ ɺɺ ɺ .  

 
3.2 MHI Control 

 
A. Mobile Base Control Overview 
 

The motion of the mobile base is based on PID control 
for the desired linear and angular velocities of the base. As 
shown in Figure 3, each omni-directional wheel has six 
free-rolling sub-wheels that may cause a slip. Moreover, it 
was observed that the mobile base contains inherent 
nonlinearity induced from the wheel and belt-pulley 
structure. We thus also use a fuzzy logic control (FLC) and 
other supplementary control techniques to overcome the 
problem. The overall control equation for motor i is:  
 

( 1) ( ) ( ) ( )i i i iU k U k U k k+ = +∆ +Γ , (2) 
 
where Ui(k) is a command to be sent to the motor amplifier 
and 

�
i(k) is an output of the supplementary control. The 

sampling rate of the control loop is set to 50 Hz. 
 
B. PID-based Velocity Control 
 

Once a desired trajectory of the mobile base is 
determined from the motion planning algorithm (will be 
explained later), the desired velocity of each wheel is 
calculated by the kinematics in Eq. (1). Using these 

 
 

Fig. 2. Hardware structure of the PoMHI. 
 

 
 

Fig. 3. An omni-directional wheel (left) and the placement 
of three wheels in the mobile base (right). 

 
 

Fig. 4. Omni-directional structure on local coordinates. 
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velocities, each motor is controlled by the PID control 
method. The velocity of each wheel is estimated using the 
exponential filter as: 
 

, ,( ) (1 ) ( 1) ( )i filtered i filtered iv k v k v kα α= − − + , (3) 
 
where 0 1α≤ ≤  is the parameter of the filter. 

To obtain the desired motor velocity, we use the PID 
control equation as follows: 
 

1

( 1) ( ) ( ) ( )
k

i p i i i d i
i

U k K e k K e i K e k
=

+ = + + ∆∑ , (4) 

 
where , ,( ) ( ) ( )i i desired i filterede k v k v k= −  is the velocity error 

of the motor, and Kp, Ki, and Kd are the PID gains. 
Using only the PID control did not bring enough per-

formance in our system. This is illustrated in Figure 5 
where the red lines represent references and blue lines 
measured values. The left graph shows the position of the 
PoMHI, and the right three graphs show the velocities of 
the wheels. We can observe the system nonlinearity in the 
black circles where the measured velocity rather decreases 
in spite of the increase of the reference velocity. The 
nonlinearity seems to be caused by the increase of friction 
when the contact point of a wheel between a sub-wheel 
and the floor is changed. Because this nonlinearity is in-
herent characteristics of the wheel structure, eliminating 
this phenomenon perfectly may not be possible. We thus 
minimize the effect of the nonlinearity through additional 
control methods that will be described in the next subsec-
tions. 

 
C. Fuzzy Logic Control 
 

We use a singleton fuzzifier, a product inference engine, 
and a center average defuzzifier in FLC of the mobile base. 
The inputs are the velocity error ei(k) and its increment �

ei(k). We use triangular membership functions (eµ  and 

eµ∆ ) as shown in Figure 6. Membership functions consist 
of five sections; negative big (NB), negative (N), zero 
(ZO), positive (P), and positive big (PB). These sections 
are determined experimentally.  

Table 1 shows the rule set of the FLC derived from the 
input membership functions. Each element of the table, 

( , )i jy , represents the output of each rule. Using the rules 
and input variables, the updating output of FLC is [3]: 
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D. Supplementary Control 
 

We adopt additional supplementary control when the 
following condition is satisfied:  
 

, ,( ) ( 1)  & ( ) ( 1)i i i filtered i filteredU k U k v k v k> − < − . (6) 
 
This condition detects when the contact point of a wheel 
between a sub-wheel and the floor is changed. While this 
occurs, excessive errors are accumulated in the PID con-
trol which causes an overshoot in position control. An 
algorithm to minimize this behavior is described below. 

If Eq. (6) is satisfied at time index k, the controller stores 
the sum of updating outputs 

�
Ui(k) and the current velocity 

( )e filteredv v k= . In each control time l after k, the controller 
checks whether a condition, ( )e filteredv v l< , is met. If it is, 
the controller compensates the excessive error by: 
 

, ( )
l

i sum i
i k

U U k
=

= ∆∑  and (7) 

,( ) ( )i i sumU l U l Uγ= − ⋅ , (8) 
 
where 0 1γ≤ ≤  is a proportional constant. Without the 
use of this control process, the system can be unstable. The 
final output of the supplementary control is as follows: 
 

, ( ) ,    
( )

0 ,    
i sumU l k l

k
k l

γ − ⋅ =  Γ = 
 ≠  

. (9) 

 
 

 
 
 
 
 
 
 
 
 

Fig. 5. Experimental results using the PID-based velocity 

control only (xɺ = 0.0 m/s, yɺ = 0.2 m/s, φɺ = 0.0 rad/s). 
 

 
 

Fig. 6. Membership functions of velocity error, eµ , and 

its variation, eµ∆ . 

 

Table 1. Control rule set. 
 

e(k) �
e(k) NB N ZO P NP 

N (1,1)y  (2,1)y  (3,1)y  (4,1)y  (5,1)y  

ZO (1,2)y  (2,2)y  (3,2)y  (4,2)y  (5,2)y  

P (1,3)y  (2,3)y  (3,3)y  (4,3)y  (5,3)y  
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E. Experimental Results 
 

Figure 7 presents the results with the adapted FLC and 
the supplementary control. In the velocity graph of each 
wheel, fine trembles due to the change of contact points 
still show up, but we can see that the effect of the inherent 
nonlinearity has significantly decreased. Moreover, in the 
position graph, measured position values almost perfectly 
followed the reference values (a straight line). 

 
4. MHI Software 

 
4.1 MHI Software Design 

 
The software in the MHI system consists of three parts. 

The tracker server program which is executed in the 
tracker server receives the configuration of each IS900 
tracker and sends this information to the MHI via wireless 
LAN. Using this information, the software running on the 
laptop in the MHI controls all devices in the MHI (except 
for the motors controlled by the DSP board) and renders 
visual and haptic information. 

The tracker server program and the MHI communicate 
through wireless LAN. Due to the update rate of the IS900 
tracker, the network update rate is set to 190 Hz. To 
maintain this speed, the UDP protocol is used instead of 
the TCP protocol. TCP, which is more reliable than UDP, 
is sometimes too slow and even exhibits severe jitters. 
Whenever a packet is missed in TCP, the protocol re-
transmits all packets after the missed packet and causes a 
long delay which is unacceptable in our application. The 
UDP is not as complex as the TCP, and is therefore faster. 
Although some packets can be missed and reordered dur-
ing transmission in UDP, its effect can be made trans-
parent to a user. 

The haptic server program is comprised of networking, 
motion planning and haptic rendering parts. First, the 
networking part receives the tracker information from the 
tracker server and transforms the coordinate system from 
IS-900 to the world coordinate frame. This updates the 
configuration of the user, the mobile base and the haptic 
interface point (HIP; a point modeling the haptic tool tip) 
and sends the new information to the visual server through 
network. Note that since the haptic and visual server pro-
grams communicate with each other via network, the two 
servers can operate on separate machines for purposes 
such as higher performance or improved convenience. 
Second, the motion planning part calculates the next 
proper configuration of the mobile base and commands 
angular and linear velocities to the mobile base. Finally, 
the haptic rendering part detects a collision between the 
HIP and virtual objects and calculates haptic feedback 
force. All of these parts run at different rates, so the haptic 
server is designed as a multithreaded program. 

The other server program which also runs on the laptop 
is the visual server. The visual server receives the con-
figuration information from the haptic server and renders 
visual scenes. In our current system, a HMD is used for 
visual rendering, so the visual server also runs on the 
laptop with the haptic server. If other visual systems are 
used (e.g. CAVETM), the visual sever can be easily moved 
to another machine that controls the visual display and 
communicate with the haptic server through network, as is 
done in [11]. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Experimental results with the modified velocity 

control (xɺ = 0.0 m/s, yɺ = 0.2 m/s, φɺ = 0.0 rad/s). 
 

 
 

Fig. 8. Software structure of PoMHI. 
 

 
 

Fig. 9. Configuration space of the MHI.  
 

 
 

Fig. 10. Motion planning algorithm. 
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4.2 Motion Planning Algorithm 
 

Basically, the mobile base has to place the haptic device 
in a proper position where the device can give force 
feedback to a user most effectively while avoiding colli-
sions with a user. Considering these constraints, we set the 
goal position of the MHI on a line which passes the user 
and the user’s hand grasping the haptic tool. The distance 
between the user and the MHI is maintained within the 
typical arm length of an adult. Moreover, the MHI always 
faces the user so that the haptic interface tool is positioned 
in front of the user.  

To represent the motion of the MHI, we introduce a 3D 
configuration space where its x and z axes represent the 2D 
position of the mobile base and its y axis the direction of 
the MHI in the workspace. In the configuration space, a 
configuration of the MHI is represented as a point, and a 
user is represented as a cylindrical obstacle (see Figure 9). 

To move the MHI to a goal configuration without col-
liding with the user, we developed the following motion 
planning strategy consisting of three cases. First, when the 
MHI is too close to the user, it moves away from the user 
as soon as possible to avoid possible collisions with the 
user. Second, when the goal position is close to the current 
position, the MHI moves toward the goal. Finally, when 
the goal position cannot be reached directly (e.g., when the 
user is on the path), the MHI sets sub-goals between the 
goal and current position of the MHI and moves towards 
the nearest sub-goal. An implemented algorithm for this 
strategy is shown in Figure 10.  

To evaluate the performance of the motion planning 
algorithm, we simulated the motion of the mobile base and 
the user and represented the results with graphs in Figures 
11 and 12. To simplify the simulation process, we as-
sumed the mobile base could always move with maximum 
velocity. In each graph, the red point represents the current 
position of the MHI and the blue region represents the next 
position of the user where the mobile base can catch up 
with the user in 1 second. The results indicate that the 
change of maximum angular velocity does not signifi-
cantly matter to the MHI while the change of the maxi-
mum linear velocity does.  

 
4.3 Force Rendering Algorithm 

 
To calculate feedback force for a user given the HIP po-

sition and a virtual environment model, we use the virtual 
proxy algorithm which is widely used for haptic rendering 
with static objects. In a MHI, the movement of a mobile 
base can cause unwanted forces that may be perceived by 
the user. However, if the mobile base is tightly posi-
tion-controlled and significantly heavier than a haptic in-
terface on top of it, we can ignore the effect of mobile base 
dynamics. To verify this fact, we conducted an experiment 
with a force sensor attached between the lank link of the 
PHANToM and the puck held by the user. 

The results of the experiment are shown in Figures 13 
and 14 where the red lines represent commanded force to 
the haptic device and the blue lines recorded force by the 
force sensor. According to the results, the differences 
between the commanded and recorded force in the case 
of the moving mobile base are not greater than those in 
the case of the stationary mobile base. This means that 
the mobile base dynamics does not significantly affect 
the feedback force delivered to the user. Therefore, we 
calculate torque commands sent to the haptic interface 
only considering the static torque-force relationship of 
the desktop haptic interface. 

 
 

Fig. 11. Regions that the mobile base can move in 1 
second with different maximum angular velocities.  

 

 
 

Fig. 12. Regions that the mobile base can move in 1 
second with different maximum angular velocities.  

 

 
 
 
 
 
 
 
 
 
Fig. 13. Comparison between commanded and meas-

ured forces when the mobile base was stationary.  
 
 
 
 
 
 
 
 
 
Fig. 14. Comparison between commanded and meas-

ured forces when the mobile base was moving. 
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4.4 Virtual Environment Model 

 
Not only primitive models such as a plane and a cyl-

inder but also complex triangular mesh models can be 
loaded and rendered in the PoMHI. The visual server also 
shows the current position of the HIP to let the user know 
where s/he interacts with and the wall for a warning about 
the physical workspace limit in a room. The model of the 
mobile base is also loaded and visually rendered via a 
HMD in order to help the user avoid colliding with the 
mobile base for the safety purpose. 

 
5. Applications 

 
The current MHI system can provide the user with 

visual and haptic feedback about large virtual environ-
ments. One example is shown in Figure 15. A complex 
dolphin model consisting of 4488 faces is loaded, and the 
user sees and touches the real-sized dolphin model (1258 
mm wide, 426 mm high, and 352 mm deep). For the sta-
bility of the mobile base, we set the maximum linear and 
angular velocity to 0.2 m/s and 40 degree/s, respectively. 
With this maximum velocity values, the MHI can follow 
the user in most cases, unless the user moves abruptly.  
 

6. Conclusions and Future Work 
 

We have develop an initial version of new mobile 
haptic interface named PoMHI and its applications. The 
PoMHI can place itself to an appropriate configuration to 
provide boundaryless haptic feedback while avoiding 
collisions with the user, and handle general virtual 
environment models. We adopted several motion control 
methods to stably and correctly control the motion of the 
mobile base. We also examined the fidelity of force 
display in the PoMHI by comparing actual force outputs 
with desired values. 

We are currently working on a next version of the 
PoMHI. This version has four omni-directional wheels 
with advanced design and a lift for the desktop haptic 
interface for the extension of its workspace in the height 
direction. We are also upgrading the software in terms of 
more sophisticated motion planning algorithm, more 
precise kinematics calibration, and force computation 
algorithm considering the effect of the mobile base 
dynamics. Once all of these are completed, we will 
integrate the PoMHI into the CAVETM that is the most 

immersive large virtual environment platform among the 
present.  
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